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The phase structure of a field theory can have two qualitatively different forms- the 

less familiar of which involves high temperature symmetry breaking and low temperature 

Bymmetry restoration and is dubbed an inverse phase transition. After a general discus- 

sion of such inverse phase transitions we present an application of this phenomenon in 

which the symmetry under consideration is baryon number. The model has the virtues 

of generating the observed quark-antiquark asymmetry (with no explicit baryon number 

violating interactions) while simultaneously providing the dark matter known to exist in 

galactic halos and clusters of galaxies. Constraints from cosmology and particle physics 

highly COnBtrtin the mass of this dark matter candidate: 40GeV < m+, < 50GeV. In this 

way we demonstrate our main conclusion: the exotic phase structure of the inverted form 

can give rise to novel, predictive and testable cosmological phenomenon. 
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Particle Physics, Baltimore, Maryland, 1991. 

e Operated by Universities Research Association Inc. under contract with the United States Department 01 Energy 



1. Introduction 

Our purpose in this talk is to emphasize some unusual and potentially quite useful 
aspects of cosmological phase transitions. Our discussion consists of two parts: the first is 
a general review of what shall be called ‘inverse phase transitions’ - phase transitions with 
the unusual property of high temperature symmetry breaking/low temperature symmetry 
restoration 1 ; the second part of our discussion gives a cosmological application of this 
inverse phase structure [2] [3] - a mechanism by which baryogenesis and dark matter 
are intimately linked, thus providing, among other things, a natural explanation of the 
tantalizing hitherto unexplained fact that R 
of magnitude or two. 

baryon/S&k matter is unity to within an order 

By way of introduction we first review the more usual phase structure of low temper- 
ature symmetry breaking/high temperature symmetry restoration. We then discuss some 
quantities which can qualitatively affect this phase structure such as spacetime curvature, 
a conserved charge asymmetry or a (slightly) more complicated field content. The latter is 
the main focus of our paper and we discuss a simple model which exhibits the inverse phase 
structure property. Our conclusion will be that rather natural classical potentials can give 
rise to this unusual phase transition phenomenon. We will then apply this mechanism 
to yield a novel model which ties together baryogenesis and dark matter, as mentioned 
above. We emphasize at the outset that our goal is not to present a single complete and 
phenomenologically viable model. Rather, we hope to illustrate that a rather exotic cos- 
mological phase structure can give rise to unusual, predictive and hence fslsifiable solutions 
to problems in astroparticle physics. 

2. Inverse Phase Structure 

11.1: Zero Temperature 

The standard approach for finding the vacuum configuration of a quantum system is 
to minimize Veff , the effective potential. We recall that V’* is the classical potential V” 
together with all quantum corrections. In practice, Veff cannot be determined exactly. 
Rather, one usually makes use of a particularly tractable approximation - the loop ex- 
pansion. In this approach, an infinite number of Feynman diagrams are summed up to 
yield the O(tL) corrections to the classical potential. Upon minimization with respect to a 
spacetime independent field configuration, the vacuum state of the system is determined. 

11.2: Nonzero Temperature 

To determine the vacuum state of a system at finite temperature (assuming global 
thermodynamic equilibrium) one follows a similar procedure as in the zero temperature 
setting. A temperature dependent effective potential Veff(d;T) is calculated and then 
minimized. Veff(qS; T) is the classical potential together with all quantum corrections in the 
presence of a thermal bath. It is again generally impossible to compute Veff(q4; 2’) exactly 

’ To our knowledge the first appearance of this possibility occurred in [I]. 
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- rather, one usually employs a loop expansion which takes the same form as it does at 
T = 0 with well know modifications to the Feynman rules in the imaginary time formalism. 
(For details of this standard material see [l] and [4]) T o summarize, for a host of theories, 
including all those to be discussed here, the one-loop finite temperature effective potential 
is straightforward to calculate. 

11.3: The Usual Phaae Structure 

To illustrate the more familiar finite temperature field theory phase structure, let’s 
consider a Q4 theory which exhibits spontaneous symmetry breaking at T = 0. The one 
loop finite temperature effective potential V,‘,“.-,,,,(#J;T) is calculated as outlined above 
with the result 

v,‘,“.-,o,,(f$;T) = V,‘,“.&,,(~i T = 0) + g lW +2h(l - e-(“‘+v’)“‘)d= (2.1) 

where yz = ir$‘T’. Th 1s result becomes particularly transparent in a high temperature 
expansion which yields 

VO:--bop(4; T) = V::--loop(d; T = 0) + $#a + o(@). 
Note that X is positive to ensure boundedness from below. We can interpret (2.2) as 
providing an effective mass m,fl: 

(2.3) 

As we raise T, the negative mass squared driving zero temperature spontaneous symme- 
try breaking is pushed positive thus restoring the invariant 4 = 0 state as the vacuum. 
This is the prototype of low temperature symmetry breaking/high temperature symmetry 
restoration. 

11.4: Further Phase Structure Dependencies: 

In addition to finite temperature effects, there are a variety of other quantities which 
can qualitatively affect the phase structure of a theory. Let’s mention three, the first two 
of which, not being our main concern, will be treated schematically. 

(1) Spacetime Curvature: 

In a curved background (at T = 0), the equations governing fluctuations #r in a scalar 
field 4 take the form 

(V: + (R + m2 + ;X~#‘)q5, = 0 (2.4) 

All terms in addition to the Laplacisn may be thought of as contributing to an effective 
mass and hence the phase structure depends both qualitatively and quantitatively on R, 
the curvature. 
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(2) Cosmological Charge Asymmetry: 

Consider a theory with a globally conserved charge Q which for some reason has a net 
charge asymmetry. This charge, at finite T can be stored either in thermal field excitations 
or in zero momentum field condensate. The question of whether there is in fact any charge 
stored in condensate (i.e. whether we have spontaneous symmetry breaking ) amounts 
to determining whether the thermal modes are capable of storing all of the charge of the 
system [5]. If not, there mutt be a condensate storing charge. It is not hard to show, for 
instance, in the simple case of a single charged scalar field, that any net charge asymmetry 
ensures that there is some positive temperature below which charge must be stored in a 
condensate, i.e. charge asymmetry can drive low temperature symmetry breaking. On 
the other hand, in a cosmological context, such an asymmetry can drive high temperature 
symmetry breaking [6]. The reason for this is that the charge density in such circumstances 
grows like T3 which is faster than the capacity of the thermal modes to store charge. 

(3) Nontrivial Field Content: 

Our main focus is the effect on the temperature dependent phase structure of going 
beyond a theory containing a single scalar field. For instance, consider the next simplest 
possibility: a theory with two complex scalar fields 4 and c. We take a general form for 
the classical potential 

V(4,u) = -$ldl” +m;lo12 + a11qq4 + a21014 - 2a31421012. (2.5) 

We take the mass parameters and the couplings to be positive and real, as well as oraa > 
o:. These choices ensure boundedness from below and also imply that the zero temperature 
effective potential is minimized for 4 = 0 and o = 0. Now, lets examine the one-loop finite 
temperature effective potential which, for ease of analysis, we approximate using a high 
temperature expansion. A short calculation gives 

V,=~lo,,(~,o;T) = v(cj,o) + [-“” ;2n1T21412 + 2a2 - a3Tzl~lzl. 
6 (2.6) 

Consider the portion of parameter space for which 2ar < aa < 2aa. We see that finite 
temperature corrections drive a negative mass squared for the d, field. In this approximation 
we therefore find that for T < T, s [&&]‘12 mg the theory is unbroken while for T > Tc 
the minimum of the effective potential is at 141 # 0, ]cr] = 0. This simple example thus 
exhibits an inverse phase structure: high temperature symmetry breaking/low temperature 
symmetry restoration. 

The upshot of this discussion is that a natural classical potential - without fine tuning 
of parameters - can yield the intuitively unexpected inverse phase structure. 

The first person to realize this possible phase structure in the context of quantum 
field theory was Weinberg [l] who illustrated this phenomenon in an O(n) x O(n) model. 
He also noted that there are physical systems such as Rochelle Salts which exhibit high 
temperature symmetry breaking. 

A natural question to ask is what are the cosmological possibilities/implications of such 
an inverse phase structure? A couple of groups have taken this question up. Langacker and 
Pi as well as Salomonson, Skagerstam and Stern [7] have applied an inverse phase transition 
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model to try to solve the monopole problem and more recently Kephart, Weiler and Yuan 
(see also [S]) have classified a variety of interesting phase transitions/restorations which 
can occur in extensions of the Weinberg-&lam model. We will come back to the latter 
work at the end of our discussion; for now we move on to present our own cosmological 

. . 
apphcatlon of such Inverse phase transitions. 

3. Baryogenesis, Dark Matter and the Width of the Z 

There are three motivations for the work to be presently described [2] [3]. First, we are 
aware that any theory of baryogenesis must have baryon number violating interactions. 
However, we are also aware that baryon number violating interactions have not been 
observed. Is it possible to have baryogenesis in a theory for which Lunire.se is baryon- 
number conserving? As we shall see, the answer is yes if one makes use of an inverted 
phase structure. The second reason is that anomalous baryon number violating standard 
model interactions indicate that any viable baryogenesis scheme must occur at about the 
weak scale to avoid being washed out. We will see that the present scenario can naturally 
occur at such a scale. Finally, and we. feel most compelling, is that the present work 
provides a natural explanation for the mysterious fact R bsryo&dsrk matter is unit,’ to 

within a factor of ten to one hundred, a ratio which is a priori completely arbitrary. 

111.1: Essentials of the Model 

Sakharov identified the necessary ingredients for a dynamical theory of baryogenesis as 
consisting of baryon number violating interactions, CP violation and a period during which 
the universe was out of thermal equilibrium. Our main point of departure with respect 
to most models is to replace explicit baryon number violating interactions by spontaneous 
violation [2]. We will have nothing special to say about CP violation (which we will gen- 
erate using complex Yukawa couplings) nor about an out-of-equilibrium scenario (which 
we will parameterize by the super-thermal abundance of a certain species of particle). 

We will realize spontaneous baryon number violation by introducing a complex scalar 
field 4 which is colourless but nonetheless has a nonzero baryon number. The potential for 
# (with another scalar field c) will be chosen, as presented earlier, to yield high temperature 
symmetry breaking/low temperature restoration of U(l)*. That is, above some critical 
temperature T, we will have < 4 ># 0 while below T, we recover < 4 >= 0. Additionally 
we will introduce two more complex scalars 41 and 42 which will play the role of ‘lepto- 
quarks’. The field 41 will be able to decay to a u, d pair while 42 can decay to a u, e 
pair. A coupling Q@&& will induce a mixing term for < 4 ># 0 allowing $1 to have a 
second decay channel to u, e and similarly 562 will have a decay channel to u, d. Thus when 
< 4 ># 0 there will be apparent baryon number violating decays. Now, we say ‘apparent’ 
because our theory is chosen to be U(~)B invariant - any apparent baryon number violation 
amongst the quanta is precisely compensated by a back reaction on < 4 >. That is, the 
U(~)B current is conserved and consists of contributions from the usual quarks and from 
< 4 >. Any change in one is precisely compensated for by the other. It thus behooves us 
to distinguish between baryogenesis and ‘nucleogenesis’ - the former does not occur in this 
model, but the latter does. In other words our ‘nucleogenesis’ amounts to rearranging an 
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initial condition of ng -no = 0 into alater state of 0 = (no -~~)Iquorrt,+(~~--71g)l<~>. 
This however is not the end of the story. At temperatures below T,, U(~)B is restored 
- that is < 4 > goes back to zero. The antibaryonic charge that was stored in < 4 > 
reappears as a cold bath of scalar antibaryonic 4 particles. Our proposal is that these 
particles constitute the dark matter [3]. 

The assumption that 4 is the dark matter limits the choice of what 4 can be. We 
have considered two possibilities: 4 as a gauge singlet and 4 as an SU(2)w triplet with 
Y = 0. The latter possibility (see also (191) is th e more interesting of the two and will 
be the subject of what follows. One immediate check is to determine whether or not 
the neutral member of this triplet is the lightest as the dark matter candidate must be 
electrically neutral. A one loop calculation shows that this is indeed the case after weak 
gauge symmetry breaking [3]. Next, let’s give the Lagrangian of our model: 

with 

L = J&mdard model + L’ f L” f Lkin (3.1) 

L’ = ~#~414; + IW#~~I~: + fi&UTCD t fv$;UTCE + f&-JTCB + h.c.; (3.21 

and 
L” = -?n#” - a1lCI - aalu)” + 2a3142142i 

and &a containing the kinetic terms for the new scalar fields. A few remarks are in order. 
First, the 43 field has been introduced (with quantum numbers the same as 42) to ensure 
that there are enough Yukawa couplings to have CP violation (the inclusion of more than 
one generation could be used in place of this choice). Second, all quarks and leptons are 
taken to be right handed and hence SU(2)w singlets. Third, the 4 field has 1691 = l/2 
and hence the lightest component (the neutral member) is stable. Fourth, introducing all 
of these scalar fields is quite unattractive. We reemphasize, though, that our goal is to 
illustrate some unusual physics which follows from making use of inverse phase transitions. 
We therefore suspend the usual reluctance for such additions which we would have if our 
goal had been to build a fully realistic model. 

Using standard methods we can compute the quark-antiquark excess produced in this 
model in terms of n, the out of equilibrium abundance of 4; particles at temperature 2’ [2]. 
(As mentioned earlier we arc psrameterizing the out of equilibrium nature of our scenario 
by n which we assume to be O(Tz) even though we take A4 > T.) The result is 

B = = N- jgIm[fif;+zl < f$ > I”][ 
9 ,o~~Trlll + ~IF. (3.4) 

In this expression, CJ+ is the number of light degrees of freedom at temperature T and M is 
a typical C$ or 4i particle mass. Minimization of the effective potential gives < 4 >m T and 
hence we must have T N M in order to generate a sufficiently large B. With these values 
it is well within the capabilities of this model to yield B N lo-‘s, the observed value. 

111.2: Dark Matter 
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We have seen that we can generate a quark-antiquark asymmetry of the correct mag- 
nitude in our approach, with the expense of generating an equal and opposite charge in 
the vacuum. As the temperature drops further we know that U(~)B is ultimately restored. 
What happens to the antibaryonic charge in < 4 > when this VEV is driven back to zero? 
This antibaryonic charge appears as a bath of scalar 4 particles with total antibaryonic 
charge equal in magnitude to no. Such a cold bath of massive weakly interacting particles 
is a natural dark matter candidate. In fact, it is a rather novel dark matter candidate for 
two reasons. First, it is antibaryonic. Second, its relic abundance is fixed by conservation 
laws rather than by the usual dynamical calculation involving annihilation rates in the 
early universe. To see this we note that baryon charge conservation yields 

(TZB - nz) = b.+(n* - “3) (3.5) 

where b+ is the baryon number of the 4 field. It is straightforward to see that only the 
excess asymmetry particles will survive until today and hence 

n+ = ne/b.+ (3.6) 

from which we have 
fk$ = z&j. (3.7) 

To avoid overclosure of the universe we thus determine an upper bound on the mass of the 
b particle: 

m+ I kpm, 
l--S&j 

aB . 
In our model /beI = l/2 and taking 0~ = .Ol we find me 5 50 GeV. 

We can use particle physics to go further. Recall that 4 is a triplet and that the 
electrically neutral member is our dark matter candidate. The charged partners contribute 
to the width of the 2 unless the multiplet is sufficiently heavy. In fact, we get a lower bound 
from this constraint of m+ 2 40 GeV. Hence, particle physics and cosmology combine to 
yield a rather narrow window of acceptable mass values: 

40GeV I m+ 5 50GeV. (3.9) 

We therefore see that this exotic cosmological phase structure yields unusually con- 
strained physics. Equally important, we have a natural explanation of why the relic baryon 
abundance is close to that of the dark matter abundance: they both derive from precisely 
the same source. 

111.3: Direct Searches 

Even without viewing this model as anything but illustrative, it is worthwhile to pursue 
its signatures as far as possible. Along this line of inquiry it is natural to ask about 
whether direct dark matter searches and accelerator data shed any light on this scenario. 
At present the answer is no. For direct dark matter searches this is because our candidate 
does not have neutral current interactions and hence only scatters off of nuclei via double 
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W exchange. For the’types of detectors envisioned by Goodman and Witten [lo] we expect 
about one event per year per kilogram of detector. The dominant accelerator signature is 

the pion spectra produced from 2 + @’ + K+ + 2 + K- mediated by the charged members 
of the 4 multiplet. The details of this are given in [3]; suffice it to say here that it appears 
that presently available accelerator data does not impinge on the model under study. 

4. Gauge Symmetry Phase Transitions 

The final issue we shall discuss is the inclusion of gauge symmetries amongst those 
which can undergo inverse phase transitions. This is a subject that has been studied in 
[I] [ll] [12] (131. Much the same way as we have shown that global symmetries can be 
broken at high temperatures and restored at low temperatures, gauge symmetries can also 
exhibit such behaviour. For example, the gauge symmetries of the standard model can 
be broken for a period of time in the early universe and restored at a sufficiently high 
scale to avoid conflict with experimental data. For an example of this phenomenon we can 
return to the model we have been discussing and replace the d field (which occurs in the 
inverse phase transition potential) by the Higgs field of the standard model. As shown in 
[3](following the work of [13]), a simple study of the structure of the finite temperature 
effective potential in this context reveals a number of interesting possibilities. Amongst 
these are periods, for example, in the early universe in which at a very high scale all 
symmetries are restored, followed by an intermediate scale in which all are broken, finally 
followed by a low temperature theory in which SU(3), x U(l)., x U(~)B are restored. 
The cosmological implications and restrictions on such relatively complicated stages of 
symmetry change have yet to be fully understood and are sure to embody interesting 
physics. 

5. Conclusions 

In this talk we have emphasized one general point that has been known for some time 
but has received comparatively little attention: the phase structure of a field theory can 
quite naturally follow an inverted form in which a symmetry is broken at high temperatures 
and restored at low temperatures. We have given one interesting application of such 
a scenario in which baryon number is the symmetry of consideration. In this model the 
issues of baryogenesis and dark matter are seen to naturally merge; combined with particle 
physics considerations we find the scenario to be hearteningly predictive. Furthermore, it 
gives a natural explanation of the puzzling ‘coincidence’ that the relic abundance in baryons 
differs from the critical closure density by only one to two orders of magnitude. Beyond 
the particulars of this model, our main conclusion is that there are a rich set of possible 
cosmological phase transitions leading to the presently observed set of symmetries. Some 
of these possibilities leave a very definite and hence testable signature and are worthy of 
further detailed study. 
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